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ABSTRACT 
Objective: To aid nurses’ understanding of effect size 
utilisation in clinical and research contexts.

Design and data sources: Methodological discussion 
paper that is based on the author’s experiences as a 
clinician and researcher and is supported by literature.

Primary arguments: Patient change is a key 
consideration for clinical nurses and nurse 
researchers. Nurses routinely use measurement 
instruments to identify and quantify such change 
informing intervention outcomes, clinical decision-
making, and health research conclusions. Whether 
improvement or deterioration, patient change should 
be operationalised through the magnitude of change 
(i.e., effect size). Effect sizes relative to the context 
of change (clinical vs empirical) and the reliability of 
the instruments used are important considerations 
here. However, despite discourse on the utilisation 
of effect sizes in health, aspects of effect sizes can 
be poorly understood, misapplied or overlooked. 
Furthermore, nurse researchers may default to 
Cohen’s d for use in power analysis and results 
reporting where they should be considering an effect 
size derived from other methods in the first instance. 
In part, this is due to the literature surrounding 
aspects of effect size being inherently complex, 
impacting on nurse and nurse researchers’ capacity to 
acquire a thorough understanding of the topic.

Conclusions: Effect size in health can be particularly 
complex. Nevertheless, nurses and nurse researchers 
should have some understanding about effect sizes 
and their role in measuring patient change in clinical 
and empirical contexts. They need to be aware of 
how measurement instruments detect, track and 
quantify patient change and the resultant magnitude 
of effect relative to the clinical significance of the 
change for the patient. This paper aids nurses to 
effect robust change based on informed decision 
making thus strengthening their evidence-based 
practice.

What is already known about the topic?
•	Patient change informs nurses clinical decision-

making strategies; however, nurses may not 
consider the magnitude of change relative to 
the context of change and the reliability of the 
instruments used to identify and quantify the 
change

•	Effect size is one of the four criteria needed for 
power analysis and is perhaps the most difficult to 
identify

•	Underpowered studies result in imprecise 
estimation of the true effect, which could be an 
over- or an under-estimation
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INTRODUCTION 
The measurement of patient change is important for clinical 
nurses and nurse researchers to understand. Patient change 
is characterised as a deviation from a patient’s baseline in 
medical, physical, behavioural, cognitive, functional, capacity 
and/or mental health domains. A change in a patient’s 
condition is complex as it could be benign or clinically 
important, subtle or overt, sudden or gradual and positive or 
negative in nature. Regardless of the nature, however, nurses 
consider patient change with each encounter to inform 
clinical decision making. Indeed, a key goal for clinicians is 
to identify, treat, and modify care interventions based on 
patient change. Clinical researchers may use patient change, 
such as comparing two antihypertensives in a randomised 
controlled trial (RCT), as evidence regarding the efficacy of an 
intervention. Identifying reliable measurement instruments 
to predict, identify, and quantify patient change is important 
for both clinicians and researchers. Effect and effect size (ES) 
have a central role in these considerations.

In health patient change is often described as an effect. 
An effect in this context relates to patient change due to 
an action, intervention, or other cause. Nurses generally 
observe effects from two perspectives: functional (e.g., 
changes to capacity, mobility, or continence) and medical 
(e.g., changes to temperature or blood pressure) contexts. 
Clinical researchers use statistics to identify an effect when 
comparing outcomes in two populations (e.g., between two 
treatments in an RCT), treatment effects within the same 
group, or between low and high-risk groups. This information 
is dichotomous in nature informing whether an effect exists 
or not. On the other hand, ESs provides information about 
the magnitude, direction, and strength of an effect in relation 
to results as they occur and as such, are termed magnitude of 
effect.1–3 For this reason, effect and ES are important concepts 
for nurses and nurse researchers to understand. The purpose 
of this paper is to aid the understanding of ES utilisation in 
determining clinically significant patient change by nurses 
and beginner nurse researchers whose knowledge on these 
concepts may be limited.

BACKGROUND 
This paper is part of a series of articles about methodological 
aspects of health research. The overarching aim of this series 
is to assist nurses and beginning nurse researchers to critique 
research literature and conduct research that informs 
evidence-based practice. In this paper aspects of ES in 
measuring patient change are discussed. There are numerous 
methodological papers on ES, so from this perspective this 
paper is not new. What is new, however, is the aim to do 
without the inherently complicated, dense, and technical 
discourse that is often found in the literature regarding the 
subject that can impact the ability of beginning researchers 
and nurses to understand and apply the information. This 
paper provides a straightforward perspective on some long-
standing ES concepts.

Effect sizes have a role in many aspects of clinical health 
and research. Quantifying patient change, power analysis, 
establishing the responsiveness and minimal detectable 
change (MDC) of health-related measurement instruments 
and minimal clinically important difference (MCID) are all 
relevant here. Researchers need to translate their results to 
some quantifiable meaning, such as an ES, and then provide 
a qualitative explanation of the effect regarding clinical 
significance from which clinicians can then apply to their 
practice. These aspects of ES have important implications 
for researchers, patients, and nurses. This paper begins by 
providing some background context to these concepts in 
relation to ES.

THE IMPORTANCE OF ES IN POWER ANALYSIS 

A study’s power (aka statistical power) is the probability 
of detecting a true effect when it exists. Establishing a 
study’s power often involves a priori (before the study) 
power analysis. This type of power analysis is a process for 
determining sample size or number of observations needed 
to avoid a Type II error (false-negative), given a desired 
significance level, statistical power and population ES.4,5 
Historically a notable proportion of published research 
has been underpowered.6–8 This is a concern as statistically 
significant results in underpowered studies can reflect an 

What this paper adds:
•	This paper dispenses with the inherently 

complicated and technical terminology on effect 
size often found in the literature that can impact 
understanding. Consequently, this paper equips 
nurses to critique research literature and apply this 
knowledge to their clinical practice

•	Provides other methods for identifying a suitable 
effect size for use in power analysis and results 
reporting as opposed to defaulting to Cohen’s d

•	Draws attention to the importance of reporting 
effect size and associated confidence interval with 
research results data

Keywords: Effect size, measurement, instrument, 
clinically significant
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imprecise estimate of the true effect of an intervention 
as ‘underpowered studies have to detect much larger 
effects to achieve statistical significance.’9,1(p.125) Overall, 
in underpowered studies true and smaller effects can be 
missed, there is an increased risk of false positive statistically 
significant results and ESs of statistically significant results 
can be exaggerated to appear larger than they actually are 
resulting in little useful information about the effect size.6,8,10 
This is why identifying a suitable population ES for inclusion 
in power analysis is a primary consideration.

STATISTICAL SIGNIFICANCE VS CLINICAL 
SIGNIFICANCE 

Statistical significance and clinical significance are not the 
same thing, and the relationship between them is inherently 
complex. The former should be thought of as a necessary 
condition but not sufficient for judging a treatment to be 
effective.11 However, a pervasive myth in clinical research 
is that the smaller the p-value (i.e., statistical significance) 
the stronger the hypothesis that an effect, relationship or 
association exists.12 This is due to the p-value only informing 
the likelihood of the results occurring by random chance 
and consequently, it doesn’t tell you if the null hypothesis is 
true or false. Another consideration here is that ‘a sufficiently 
powerful test will almost always generate a statistically 
significant result irrespective of the effect size’.1(p.16) That 
is, with large samples extremely small effects can result in 
statistically significant results even when there is little to no 
clinical significance.13

Statistically significant results in health research are 
commonly interpreted as important and meaningful patient 
change. This is not entirely accurate. When researchers and 
clinicians consider a statistically significant result from a 
statistical test, the utility of the effect in terms of clinical 
significance is perhaps more important to consider. This is 
because a statistically significant result only informs whether 
an effect exists which may not be synonymous with any 
clinical or practical significance for the patient as it does 
not convey the magnitude of the effect. Consequently, the 
reliance on ‘p-values as a basis for evidence-based clinical 
decision-making is a major source of error’ and should not be 
used as the sole inference for clinical significance.14,12(p.302)

Clinical significance goes beyond statistical significance as 
it identifies whether the statistically significant difference, 
or score on a measurement instrument, is large enough to 
have clinical implications for the patient.15,16 This is where 
the utility of a statistically significant finding in terms of 
the associated ES and confidence interval (CI) needs to 
be considered. However, this is not so straightforward as 
some ‘commonly used effect sizes are limited in conveying 
clinical significance’ as they have limited interpretability 
as an ES misleading clinical decision-making, for example, 
odds ratio.12,14(p.990),17 It is recommended that ESs number 
needed to treat (NNT), success rate difference (SRD) and if 

relevant area under the receiver operating characteristic 
curve (ROC) be reported to convey clinical significance when 
comparing two populations.12,14 Reporting such ES with their 
CIs allows consumers of research to better judge the clinical 
significance of research results as they apply to their own 
contexts and standards.

While ESs are used to report research results when sampling 
a population of patients, a more relevant issue for clinical 
nurses is how to measure, quantify, and track individual 
patient change. Further, even if a statistically significant 
result is clinically significant and can be generalised to the 
population of interest, it may have little importance to an 
individual patient. There are simply too many research 
confounders, individual patient factors, and contextual 
factors to account for. This is where the use of measurement 
instruments and identifying MCID to quantity patient 
change is beneficial.15,18

MCID AND MDC 

Minimal clinically important difference (MCID) and minimal 
detectable change (MDC) have a role in determining whether 
patient change is clinically significant. MCID (aka minimally 
important difference) is fundamentally an outcome ES 
derived from health-related measurement instruments. 
MCID can be used as a reference point for identifying the 
magnitude of treatment effects based on patient change.19 
Jaeschke et al provides a self-explanatory definition of MCID 
as being ‘the smallest difference in score in the domain of 
interest [e.g., outcome measure or scale] which patients 
perceive as beneficial which would mandate, in the absence 
of troublesome side-effects and excessive cost, a change in 
the patient’s management.’20(p.408) Guyatt et al recommended 
adding ‘or harmful’ to the definition to address patient 
deterioration.21

Several factors make the concept of MCID useful in health. 
First, MCID can be used ‘for judging the magnitude of 
treatment effects [i.e., clinical significance] not only in 
routine clinical practice but also in clinical trials and 
systematic reviews, facilitating the establishment of 
treatment recommendations for patients.’22(p.2) Second, 
MCID is an ES that can be used for sample size estimates 
regarding the desired MCIDs one wishes to detect. 
Third, MCID ‘emphasizes the primacy of the patient’s 
perspective and implicitly links that perspective to that 
of the physician.’21(p.377) Finally, the MCID construct is 
easily understood by clinicians as they routinely use the 
instruments used to determine MCIDs (e.g., Visual Analog 
Scale and Functional Independence Measure) and are 
knowledgeable of the patients’ presenting condition and 
associated deviation from baseline.

The MDC criterion is tied to clinical significance and MCID. 
This is mainly due to the difficulty in operationalising MCID 
without a minimum reference point which MDC provides. 
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MDC reflects a threshold for minimum point change of an 
outcome measurement instrument or scale; this relates to its 
ability to detect actual patient change beyond measurement 
error within a defined level of statistical confidence (e.g., 
95% CI).15,23 Consequently, an instrument’s standard error 
of measurement (SEM) needs to be determined to identify 
MDC. There is a relationship between SEM, MDC, ES and 
MCID characterised by: (i) the higher the instrument’s 
reliability the lower the ES needed to achieve an MCID;15 and 
(ii) MDC needs to be smaller than an MCID to ensure that the 
change score is beyond measurement error (i.e., SEM).23

RESPONSIVENESS OF HEALTH-RELATED 
MEASUREMENT INSTRUMENTS 

A fundamental role of health-related measurement 
instruments is to identify patient change, whether 
improvement or deterioration. Responsiveness of 
instruments is one of their psychometric properties 
warranting consideration here. The responsiveness of a 
measurement instrument relates to its ability to accurately 
detect and track clinically meaningful patient change. This 
primarily relates to an instrument’s change score which 
is obtained by the arithmetic differences between serially 
gathered data, such as before and after treatment or 
comparing a control group and an intervention group.24 
Responsiveness can be further divided into internal 
and external responsiveness. The former relates to an 
instrument’s precision in tracking patient change over time 
or change before and after an intervention which can be 
defined as MDC. With external responsiveness, a reference 
instrument is compared to an external criterion, index, or 
measure from which MCID can be determined.16,25,26

AIM 
To aid nurses’ understanding of effect size utilisation in 
clinical and research contexts.

DESIGN AND DATA SOURCES 
A methodological discussion paper that is based on the 
author’s experiences as a clinician and researcher and is 
supported by literature.

DISCUSSION 
ES TYPES AND CATEGORIES 

There are many different types of ES that are generally based 
on how they are derived and from which data source. For 
instance, researchers may need to identify a population ES 
for priori power analysis while research results may be 
used to compute a sample ES. ES can further be divided into 
absolute (raw), such as the difference between cohort means, 
and relative (standardised) ESs. Any indices (e.g., squared 
correlations and kappa) that convey the magnitude of 

change are considered a relative ES.27

Relative ES can be categorised as the difference between 
groups or measures of association known as the d and 
r family, respectively.1,28 In the d family ES includes 
comparisons between binary variables (e.g., yes/no data) 
that can be expressed as relative risk or SRD. These indices 
represent the difference between two proportions classified 
as the probability of being in one of the two categories, such 
as in the Chi-square test.3 In this family, comparisons between 
a continuous variable (e.g., height and weight) means 
and their associated standard deviations (SDs) are used to 
calculate standardised differences expressing ES in SD units.29 
Cohen’s d is an example here. SDs on their own can also be 
considered as a discrete ES statistic as they represent the 
variation of each group around the mean.1,30

The r family of ES covers the direction and strength of a 
relationship between two or more binary or continuous 
variables.1 Some examples include ANOVA (f), Pearson 
product moment correlation coefficient (r) and Spearman’s 
rank correlation coefficient (p or rs). Proportion of variance 
indexes are also part of this family including coefficient of 
determination (r2) and multiple regression (R2).

In addition to statistical test and variable type impacting 
on which ES should be considered, some ES are only valid 
when statistical assumptions are met.31 For instance, in 
comparing two treatments or interventions in an RCT the ES 
may be expressed as a hazard ratio (HR), which is only valid 
if two survival curves are being compared that satisfy the 
proportional hazards assumption in that population.12,32 The 
validity of Cohen’s d, Hedges’ g or Glass’s delta, depend on the 
outcome measures in the two populations having a normal 
distribution with equal variances.12,31,33 Another consideration 
if assumptions are met, is that some ES can be converted to 
others. For example, conversions between Cohen’s d, HR, NNT 
and SRD are possible and assist with clinical interpretability 
and determining the clinical significance of results.12

DETERMINING ES 

There are many types of ES and methods for determining an 
ES. Based on their context of use, ESs are generally derived 
from two methods: distribution-based and anchor-based.

Distribution-based approaches for determining ES 

The distribution-based method for determining relative 
ES involves the underlying distribution and magnitude of 
change measured in SD units around the mean.22 ES can be 
expressed in three ways using this method: 

(i) 	 between-person SD units (person 1 mean minus person 2 
mean); 

(ii) 	 within-person SD units (post-test mean minus pre-test 
mean); and 

(iii) 	the standard error of measurement (SEM).21
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There are numerous methods for calculating relative ES 
within the distribution-based category. Perhaps the most 
widely used and reported method involves comparing the 
means of continuous variables (see Table 1). While there 
are online calculators for determining some of the ESs in 
Table 1, the formulas are provided as clinicians generally 
only need means, SDs and cohort numbers to calculate their 
own ES if not reported aiding the interpretation of results. 
It is important to note that when using SDs as an ES and for 
research in general, the population SD and sample SD are 
calculated differently and are represented by different indices 
(= population SD, s = sample SD). There are also two different 
mean indices (= population mean, = sample mean).

Population ES is one of the four criteria needed for power 
analysis in quantitative studies and is perhaps the most 
difficult to identify. Being derived from distribution-based 
methods, an ES is required for all types of power analysis 
except sensitivity power analysis where the goal is to identify 
an ES based on a known sample size. Regarding the former 
types of power analysis, researchers in the first instances 
should always attempt to identify a population ES worth 
investigating as they would be applied to the relative clinical 
or empirical context.10 This could be based on previous 
similar studies, a systematic review, expert clinical judgment 
or informed clinical opinion. Study design and methods 
and types of variables, statistical tests and measurement 
instruments used are also considerations here.4

TABLE 1: FORMULAS FOR DETERMINING DISTRIBUTION-BASED ES

Relative effect size Characteristics Formula Considerations

Cohen’s d34 Either group SD if they are 
homogeneous

𝑑𝑑 = 	
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2 -
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Cohen’s d34 Pooled SDpooled if SDs are about 
the same
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Can overestimate the true population ES

Glass’s delta (Δ)35 Control group SD if the SD 
of each group are sufficiently 
different
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Also referred to as relative change16 

Hedge’s g35 Weighted & pooled SD if group 
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𝑑𝑑 = 	
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠  

𝑑𝑑 =
𝑚𝑚! − 𝑚𝑚"

'((𝑠𝑠!
" + 𝑠𝑠"")
2 -

 

∆	= 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#$%&'$(
 

𝑔𝑔 =
𝑚𝑚! − 𝑚𝑚"

0[(𝑛𝑛! − 1)𝑠𝑠!" + (𝑛𝑛" − 1)𝑠𝑠""]
(𝑛𝑛! +	𝑛𝑛" − 2)

 

𝐸𝐸𝐸𝐸 =
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠)'*+%&*',*%&+$%	.'$/)
 

𝑆𝑆𝑆𝑆𝑆𝑆	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#01%.*	2#$'*
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆 ×	√1 − 𝑟𝑟 

𝑀𝑀𝑀𝑀𝑀𝑀34 = 𝑆𝑆𝑆𝑆𝑆𝑆 × 	𝑧𝑧	 × √2 

𝐺𝐺𝐺𝐺𝐺𝐺 = 	
∆	

√2 × 𝑀𝑀𝑀𝑀𝑀𝑀
 

𝐸𝐸𝐸𝐸	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠2&15(*	.'$/)
 

𝑅𝑅𝑅𝑅	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑚𝑚!
 

𝐸𝐸𝐸𝐸 = 	0.5 × 𝑆𝑆6789:;87<8:;9=: 

𝑅𝑅𝑅𝑅𝑅𝑅34 = 	
𝑚𝑚" − 𝑚𝑚!	

'2 × (𝑠𝑠!√1 − 𝑟𝑟)"
	× 𝑧𝑧 

 

 

Suitable for sample sizes <20 & unbiased estimates of 
the population ES opposed to Cohen’s d

Kazis formula11 Pre-intervention SD used as a 
proxy for control group SD

𝑑𝑑 = 	
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠  

𝑑𝑑 =
𝑚𝑚! − 𝑚𝑚"

'((𝑠𝑠!
" + 𝑠𝑠"")
2 -

 

∆	= 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#$%&'$(
 

𝑔𝑔 =
𝑚𝑚! − 𝑚𝑚"

0[(𝑛𝑛! − 1)𝑠𝑠!" + (𝑛𝑛" − 1)𝑠𝑠""]
(𝑛𝑛! +	𝑛𝑛" − 2)

 

𝐸𝐸𝐸𝐸 =
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠)'*+%&*',*%&+$%	.'$/)
 

𝑆𝑆𝑆𝑆𝑆𝑆	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#01%.*	2#$'*
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆 ×	√1 − 𝑟𝑟 

𝑀𝑀𝑀𝑀𝑀𝑀34 = 𝑆𝑆𝑆𝑆𝑆𝑆 × 	𝑧𝑧	 × √2 

𝐺𝐺𝐺𝐺𝐺𝐺 = 	
∆	

√2 × 𝑀𝑀𝑀𝑀𝑀𝑀
 

𝐸𝐸𝐸𝐸	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠2&15(*	.'$/)
 

𝑅𝑅𝑅𝑅	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑚𝑚!
 

𝐸𝐸𝐸𝐸 = 	0.5 × 𝑆𝑆6789:;87<8:;9=: 

𝑅𝑅𝑅𝑅𝑅𝑅34 = 	
𝑚𝑚" − 𝑚𝑚!	

'2 × (𝑠𝑠!√1 − 𝑟𝑟)"
	× 𝑧𝑧 

 

 

Can be used for within-person and between-person. 
Same as Glass’s Δ when the assumed control group is 
the pre-intervention group.

SRM25,36 Mainly used to determine 
internal responsiveness 

𝑑𝑑 = 	
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠  

𝑑𝑑 =
𝑚𝑚! − 𝑚𝑚"

'((𝑠𝑠!
" + 𝑠𝑠"")
2 -

 

∆	= 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#$%&'$(
 

𝑔𝑔 =
𝑚𝑚! − 𝑚𝑚"

0[(𝑛𝑛! − 1)𝑠𝑠!" + (𝑛𝑛" − 1)𝑠𝑠""]
(𝑛𝑛! +	𝑛𝑛" − 2)

 

𝐸𝐸𝐸𝐸 =
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠)'*+%&*',*%&+$%	.'$/)
 

𝑆𝑆𝑆𝑆𝑆𝑆	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#01%.*	2#$'*
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆 ×	√1 − 𝑟𝑟 

𝑀𝑀𝑀𝑀𝑀𝑀34 = 𝑆𝑆𝑆𝑆𝑆𝑆 × 	𝑧𝑧	 × √2 

𝐺𝐺𝐺𝐺𝐺𝐺 = 	
∆	

√2 × 𝑀𝑀𝑀𝑀𝑀𝑀
 

𝐸𝐸𝐸𝐸	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠2&15(*	.'$/)
 

𝑅𝑅𝑅𝑅	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑚𝑚!
 

𝐸𝐸𝐸𝐸 = 	0.5 × 𝑆𝑆6789:;87<8:;9=: 

𝑅𝑅𝑅𝑅𝑅𝑅34 = 	
𝑚𝑚" − 𝑚𝑚!	

'2 × (𝑠𝑠!√1 − 𝑟𝑟)"
	× 𝑧𝑧 

 

 

Also termed responsiveness to treatment coefficient 
or efficiency index

SEM For calculating MDC

𝑑𝑑 = 	
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠  

𝑑𝑑 =
𝑚𝑚! − 𝑚𝑚"

'((𝑠𝑠!
" + 𝑠𝑠"")
2 -

 

∆	= 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#$%&'$(
 

𝑔𝑔 =
𝑚𝑚! − 𝑚𝑚"

0[(𝑛𝑛! − 1)𝑠𝑠!" + (𝑛𝑛" − 1)𝑠𝑠""]
(𝑛𝑛! +	𝑛𝑛" − 2)

 

𝐸𝐸𝐸𝐸 =
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠)'*+%&*',*%&+$%	.'$/)
 

𝑆𝑆𝑆𝑆𝑆𝑆	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#01%.*	2#$'*
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆 ×	√1 − 𝑟𝑟 

𝑀𝑀𝑀𝑀𝑀𝑀34 = 𝑆𝑆𝑆𝑆𝑆𝑆 × 	𝑧𝑧	 × √2 

𝐺𝐺𝐺𝐺𝐺𝐺 = 	
∆	

√2 × 𝑀𝑀𝑀𝑀𝑀𝑀
 

𝐸𝐸𝐸𝐸	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠2&15(*	.'$/)
 

𝑅𝑅𝑅𝑅	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑚𝑚!
 

𝐸𝐸𝐸𝐸 = 	0.5 × 𝑆𝑆6789:;87<8:;9=: 

𝑅𝑅𝑅𝑅𝑅𝑅34 = 	
𝑚𝑚" − 𝑚𝑚!	

'2 × (𝑠𝑠!√1 − 𝑟𝑟)"
	× 𝑧𝑧 

 

 

SD = from total sample at baseline23 or pooled initial 
and re-test SDs. r = reliability coefficient of the 
reference tool being test-retest22 including ICC23 or 
internal consistency (Cronbach’s α)15,36

MDC37 Identifying MDC of a measure 

𝑑𝑑 = 	
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠  

𝑑𝑑 =
𝑚𝑚! − 𝑚𝑚"

'((𝑠𝑠!
" + 𝑠𝑠"")
2 -

 

∆	= 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#$%&'$(
 

𝑔𝑔 =
𝑚𝑚! − 𝑚𝑚"

0[(𝑛𝑛! − 1)𝑠𝑠!" + (𝑛𝑛" − 1)𝑠𝑠""]
(𝑛𝑛! +	𝑛𝑛" − 2)

 

𝐸𝐸𝐸𝐸 =
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠)'*+%&*',*%&+$%	.'$/)
 

𝑆𝑆𝑆𝑆𝑆𝑆	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#01%.*	2#$'*
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆 ×	√1 − 𝑟𝑟 

𝑀𝑀𝑀𝑀𝑀𝑀34 = 𝑆𝑆𝑆𝑆𝑆𝑆 × 	𝑧𝑧	 × √2 

𝐺𝐺𝐺𝐺𝐺𝐺 = 	
∆	

√2 × 𝑀𝑀𝑀𝑀𝑀𝑀
 

𝐸𝐸𝐸𝐸	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠2&15(*	.'$/)
 

𝑅𝑅𝑅𝑅	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑚𝑚!
 

𝐸𝐸𝐸𝐸 = 	0.5 × 𝑆𝑆6789:;87<8:;9=: 

𝑅𝑅𝑅𝑅𝑅𝑅34 = 	
𝑚𝑚" − 𝑚𝑚!	

'2 × (𝑠𝑠!√1 − 𝑟𝑟)"
	× 𝑧𝑧 

 

 

z-values depend on the desired CI. E.g., 1.64 for 90% 
CI and 1.96 for 95% CI.

GRI26 Mainly used to determine MDC 
and internal responsiveness 

𝑑𝑑 = 	
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠  

𝑑𝑑 =
𝑚𝑚! − 𝑚𝑚"

'((𝑠𝑠!
" + 𝑠𝑠"")
2 -

 

∆	= 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#$%&'$(
 

𝑔𝑔 =
𝑚𝑚! − 𝑚𝑚"

0[(𝑛𝑛! − 1)𝑠𝑠!" + (𝑛𝑛" − 1)𝑠𝑠""]
(𝑛𝑛! +	𝑛𝑛" − 2)

 

𝐸𝐸𝐸𝐸 =
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠)'*+%&*',*%&+$%	.'$/)
 

𝑆𝑆𝑆𝑆𝑆𝑆	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#01%.*	2#$'*
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆 ×	√1 − 𝑟𝑟 

𝑀𝑀𝑀𝑀𝑀𝑀34 = 𝑆𝑆𝑆𝑆𝑆𝑆 × 	𝑧𝑧	 × √2 

𝐺𝐺𝐺𝐺𝐺𝐺 = 	
∆	

√2 × 𝑀𝑀𝑀𝑀𝑀𝑀
 

𝐸𝐸𝐸𝐸	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠2&15(*	.'$/)
 

𝑅𝑅𝑅𝑅	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑚𝑚!
 

𝐸𝐸𝐸𝐸 = 	0.5 × 𝑆𝑆6789:;87<8:;9=: 

𝑅𝑅𝑅𝑅𝑅𝑅34 = 	
𝑚𝑚" − 𝑚𝑚!	

'2 × (𝑠𝑠!√1 − 𝑟𝑟)"
	× 𝑧𝑧 

 

 

Δ = mean change of treatment group.23 MSE = ANOVA 
for multiple baseline measures prior to intervention 
or SD of reference group for two observations (before 
and after intervention)25

Responsiveness 
statistic26 

Mainly used to establish 
responsiveness 

𝑑𝑑 = 	
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠  

𝑑𝑑 =
𝑚𝑚! − 𝑚𝑚"

'((𝑠𝑠!
" + 𝑠𝑠"")
2 -

 

∆	= 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#$%&'$(
 

𝑔𝑔 =
𝑚𝑚! − 𝑚𝑚"

0[(𝑛𝑛! − 1)𝑠𝑠!" + (𝑛𝑛" − 1)𝑠𝑠""]
(𝑛𝑛! +	𝑛𝑛" − 2)

 

𝐸𝐸𝐸𝐸 =
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠)'*+%&*',*%&+$%	.'$/)
 

𝑆𝑆𝑆𝑆𝑆𝑆	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#01%.*	2#$'*
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆 ×	√1 − 𝑟𝑟 

𝑀𝑀𝑀𝑀𝑀𝑀34 = 𝑆𝑆𝑆𝑆𝑆𝑆 × 	𝑧𝑧	 × √2 

𝐺𝐺𝐺𝐺𝐺𝐺 = 	
∆	

√2 × 𝑀𝑀𝑀𝑀𝑀𝑀
 

𝐸𝐸𝐸𝐸	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠2&15(*	.'$/)
 

𝑅𝑅𝑅𝑅	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑚𝑚!
 

𝐸𝐸𝐸𝐸 = 	0.5 × 𝑆𝑆6789:;87<8:;9=: 

𝑅𝑅𝑅𝑅𝑅𝑅34 = 	
𝑚𝑚" − 𝑚𝑚!	

'2 × (𝑠𝑠!√1 − 𝑟𝑟)"
	× 𝑧𝑧 

 

 

Relative change11 Quantitative descriptor of 
patient change16

𝑑𝑑 = 	
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠  

𝑑𝑑 =
𝑚𝑚! − 𝑚𝑚"

'((𝑠𝑠!
" + 𝑠𝑠"")
2 -

 

∆	= 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#$%&'$(
 

𝑔𝑔 =
𝑚𝑚! − 𝑚𝑚"

0[(𝑛𝑛! − 1)𝑠𝑠!" + (𝑛𝑛" − 1)𝑠𝑠""]
(𝑛𝑛! +	𝑛𝑛" − 2)

 

𝐸𝐸𝐸𝐸 =
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠)'*+%&*',*%&+$%	.'$/)
 

𝑆𝑆𝑆𝑆𝑆𝑆	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#01%.*	2#$'*
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆 ×	√1 − 𝑟𝑟 

𝑀𝑀𝑀𝑀𝑀𝑀34 = 𝑆𝑆𝑆𝑆𝑆𝑆 × 	𝑧𝑧	 × √2 

𝐺𝐺𝐺𝐺𝐺𝐺 = 	
∆	

√2 × 𝑀𝑀𝑀𝑀𝑀𝑀
 

𝐸𝐸𝐸𝐸	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠2&15(*	.'$/)
 

𝑅𝑅𝑅𝑅	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑚𝑚!
 

𝐸𝐸𝐸𝐸 = 	0.5 × 𝑆𝑆6789:;87<8:;9=: 

𝑅𝑅𝑅𝑅𝑅𝑅34 = 	
𝑚𝑚" − 𝑚𝑚!	

'2 × (𝑠𝑠!√1 − 𝑟𝑟)"
	× 𝑧𝑧 

 

 

Norman index18 Mainly serves as a starting 
baseline for estimating MCID

𝑑𝑑 = 	
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠  

𝑑𝑑 =
𝑚𝑚! − 𝑚𝑚"

'((𝑠𝑠!
" + 𝑠𝑠"")
2 -

 

∆	= 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#$%&'$(
 

𝑔𝑔 =
𝑚𝑚! − 𝑚𝑚"

0[(𝑛𝑛! − 1)𝑠𝑠!" + (𝑛𝑛" − 1)𝑠𝑠""]
(𝑛𝑛! +	𝑛𝑛" − 2)

 

𝐸𝐸𝐸𝐸 =
	𝑚𝑚! − 𝑚𝑚"

𝑠𝑠)'*+%&*',*%&+$%	.'$/)
 

𝑆𝑆𝑆𝑆𝑆𝑆	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠#01%.*	2#$'*
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆 ×	√1 − 𝑟𝑟 

𝑀𝑀𝑀𝑀𝑀𝑀34 = 𝑆𝑆𝑆𝑆𝑆𝑆 × 	𝑧𝑧	 × √2 

𝐺𝐺𝐺𝐺𝐺𝐺 = 	
∆	

√2 × 𝑀𝑀𝑀𝑀𝑀𝑀
 

𝐸𝐸𝐸𝐸	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑠𝑠2&15(*	.'$/)
 

𝑅𝑅𝑅𝑅	 = 	
𝑚𝑚! − 𝑚𝑚"

𝑚𝑚!
 

𝐸𝐸𝐸𝐸 = 	0.5 × 𝑆𝑆6789:;87<8:;9=: 

𝑅𝑅𝑅𝑅𝑅𝑅34 = 	
𝑚𝑚" − 𝑚𝑚!	

'2 × (𝑠𝑠!√1 − 𝑟𝑟)"
	× 𝑧𝑧 

 

 

Control group SD can be used. Manly used for patient-
reported outcome measures.

RCI38 Mainly used with MCID 
estimates to ascertain if the 
score change (e.g. before 
and after an intervention) is 
statistically significant39
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Formula in brackets is SEM using SD of pre-
intervention group. E.g., if z = 1.96 and RCI >1.96 then 
there is a statistically significant change based on 
95% CI.

Abbreviations: m, mean; s, standard deviation; n, number in group; MDC, minimal detectable change; MCID, minimal clinically important difference; 
SEM, standard error of measurement; ICC, interclass correlation coefficients; SD, standard deviation; CI, confidence interval; SRM, standardised 
response mean; GRI, Guyatt Responsiveness Index; RCI, Reliable Change Index
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Motivated by the prevalence of underpowered studies,15 
Cohen developed three operational definitions to describe 
distribution-based ES that could be used when no better basis 
for identifying an ES is available.34 These include:

1.	 small ES being noticeably smaller than medium but not so 
small that it is trivial, however, cannot be detected by the 
naked eye but detected by a statistical test;2

2.	 medium ES being an effect likely to be detectable by a 
careful or trained observer; and

3.	 large ES being an effect detectable by an untrained 
observer2 represented by an effect that is as far above a 
medium effect as small is below it.34

Cohen further identified ES thresholds for several statistical 
tests based on these three definitions (see Table 2) which 
assists in operationalising desired (i.e., sample size estimates 
for power analysis) and clinically significant effects (i.e., 
interpreting results).34 It is important to note that Cohen 
describes his definitions as arbitrary conventions and 
the associated ES thresholds as subjective judgements.34 
Consequently, they should serve as a guide only and not 
detract researchers from identifying relevant context-specific 
ES from the research literature based on empirical data and 
reasoned arguments.28 Cohen’s d can also be converted to 
other ESs (see Table 3). Formulas for these conversions are 
readily available in the literature.3,34

TABLE 3: CONVERSIONS BETWEEN COHEN’S d AND 
OTHER EFFECT SIZES

d effect size 
descriptors

d r r2 SRD NNT HRa HRa

0 .000 .000 .00 ∞ 1.00 1.00

.1 .050 .003 .06 17.7 .89 1.12

Small .2 .100 .010 .11 8.9 .80 1.25

.3 .148 .022 .17 6.0 .71 1.40

.4 .196 .038 .22 4.5 .64 1.57

Medium .5 .243 .059 .28 3.6 .57 1.76

.6 .287 .082 .33 3.0 .51 1.98

.7 .330 .109 .38 2.6 .45 2.22

Large .8 .371 .138 .43 2.3 .40 2.50

.9 .410 .168 .48 2.1 .36 2.81

1.0 .447 .200 .52 1.9 .32 3.17

2.0 .707 .500 .84 1.2 .09 11.71

Abbreviations: d, Cohens d; r, Pearson correlation coefficient;  
r2, coefficient of determination based on Pearson correlation;  
SRD, success rate difference; NNT, number needed to treat;  
HR, hazed ratio.
a – which HR used depends on whether the event is undesirable  
(HR <1 if population 1 is better than population 2) or desirable (HR >1).
Note: Adapted from Cohen34 and Kraemer et al12(p.303)

TABLE 2: PROPOSED ES THRESHOLDS FOR COMMON STATISTICAL TESTS

Description Example of statistical test Indices Proposed effect sizes

Small Medium Large

d ES family for mean differences 

Independent means of continuous variables Student’s t test d, Δ, g .20 .50 .80

r ES family for correlation indexes

Binary variables Chi-square test ω, φ, V, C .10 .30 .50

Two interval or ratio scale variables Pearson coefficient r

Comparison of two correlations Fisher’s r to z q

Average Spearman Rho Friedman test p (rs)

r ES family for proportion of variance indexes

Difference between proportions Sign Test Cohen’s g .05 .15 .25

For independent proportions z-test h .20 .50 .80

Mean dispersion in multiple groups ANOVA f .10 .25 .40

Eta/Omega2 η2, Ω2 .01 .06 .14

Multiple regression
•	 Multiple & hierarchical regression
•	 Bivariate regression

R2

f2

r2

.02

.02
.01

.13

.15
.09

.26

.35

.25

Other

Group mean differences Student’s t-test d, Δ, g .41 1.15 2.70

Relative risk (risk ratio) Chi-square test RR 2 3 4

Correlation indexes (range –1 to 1) Pearson and Spearman’s coefficient r, R, ρ, β, tau, φ  ± .2  ± .5  ± .8

Proportion of variance indexes (range 0 to 1) Regression modelling r2, R2, η2, ε2, ω2 .04 .25 .64

Note: Adapted from Cohen34, Ferguson40, Ellse1 
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Distribution-based methods are also used to determine 
the internal responsiveness (aka internally referenced 
or precision) and MDC of measurement instruments. 
Standard error of measurement (SEM) of an instrument 
in identifying its MDC is an important aspect here. This 
is because MDC serves as an anchor of sorts. That is, only 
when an individual’s change score exceeds the SEM can 
clinicians be confident that it is an actual change rather 
than a product of instrument measurement error.24 While 
many of the distribution-based approaches for determining 
ES in Table 1 could be used to examine the precision of a 
measure,24 the standardised response mean (SRM) and 
Guyatt et al., responsiveness index (GRI) are mainly used. 
Proposed ES benchmarks for SRM and GRI include 0.20-<0.50, 
0.50-0.80, and >0.80 representing small, moderate and large 
responsiveness, respectively.25,26,41 A summary of distribution-
based approaches for determining ESs and the internal 
responsiveness of a measure are illustrated in Figure 1.

Anchor-based approaches for determining ES 

While ESs derived from distribution-based methods 
have a key role in identifying population effects from 
an intervention in research and MDC, they have limited 
operational utility in guiding clinical decision-making 
based on individual patient change.15 This is where MCID 
is important to consider. MCID represents a small ES as it 
is the minimum point gain on a measurement instrument 
indicating clinical improvement.42 Anchor-based (aka 
externally referenced) methods are used to identify 
MCID. Anchor-based methods primarily involve using an 
independent and external instrument or criterion (i.e., 
anchor) that measures change in the patient’s condition, 
function, or activity to examine the MCID of the reference 
instrument. The advantage of this method is that a robust 
clinically important difference (RCID) can be established as 
one or more independent measures can be compared to a 
single reference instrument.39

Identifying MCID associated with this method is a complex 
process involving multiple steps and statistical methods. 
This process largely depends on the anchors selected and a 
statistical platform will be needed for analysis. For instance, 
clinicians and researchers should be familiar with all the 
measures used, a patient-reported outcome measure should 
be the primary anchor (e.g., Global Impression of Change 
Scale) and empirical correlation (usually Spearman’s 
correlations coefficient) of at least 0.5 (>0.7 is preferable) 
between the anchor/s and the reference measure is needed.39 
Several different types of anchors can be used, some of which 
are considered ESs (see Figure 1). If more than one anchor 
is used triangulation of the resultant MCID values will be 
needed. Complicating matters, patient-reported outcome 
measures as a primary anchor may not be possible in some 
patient cohorts due to cognitive capacity. In this instance, 
similar measures to the reference measure, a checklist using 
the clinician’s perspective regarding discrete patient change 
(e.g., independence in transfers) and/or a functional outcome 
measurement instrument (e.g., the Functional Ambulation 
Categories) can be used.22

Anchor-based methods should be the primary method used 
for estimating MCID over distribution-based methods This 
is because this method quantifies patient change relative to 
a measurement instrument.15 However, distribution-based 
methods do also have a role. For instance, the Norman et 
al., formula (see Table 1) can be used to reveal small but 
important patient change from an intervention as indicated 
on the reference instrument and the Reliable Change Index 
statistic can show whether a score change is statistically 
significant.18,22 Due to the complex nature of incorporating 
both methods in determining MCID a full breakdown is 
out of the scope of this paper. Of the many methodological 
papers in the literature that can assist here, the paper by 
Malec and Ketchum is a standout as it provides step-by-step 
instructions.39

• Student's t
• Cohen's d
• Glass’s ∆
• Hedge’s g
• Kazis et al.'s 

statistic

• SEM
• Standardized response 

mean
• Guyatt et al.'s 

responsiveness index

• Reliability Change Index
• Norman et al.'s statistic

• Patient rating
• Youden index
• Clinician rating
• Area under ROC
• Similar to reference

Distribution-
based ES

Detect change
Power analysis

Results reporting

Anchor-
based ES

Track & quantify 
patient change

MCID

Internal 
responsiveness 

Empirical context
The measure 

Internal precision
MDC

External 
responsiveness 
Clinical context

The patient
External anchor

FIGURE 1: ES APPLICATION AND APPROACHES FOR DETERMINING ES AND RESPONSIVENESS OF A MEASURE
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REPORTING ES 

It is essential that results of clinical research be conveyed 
to consumers in ways that accurately informs clinical 
significance and ultimately decision-making; ‘p-values do not 
serve that function. Nor do statistics like Odds Ratio’.12(p.307) 
Furthermore, researchers should not treat p-values as a 
surrogate for ESs as they are not synonymous with clinical 
significance. This is due to a p-value primarily reflecting the 
quality of research design decisions including statistical 
tests, analytical procedures and reliability of measures used 
and above all, sample size.12 Consequently, in addition to the 
p-value researchers should report both absolute and relative 
ES along with SDs and CIs with all general results. This, 
however, is not common practice. Consumers of research 
need ESs as they show the size of the substantive significance 
(magnitude) of an effect which aids in determining the 
clinical significance of research results. Reporting more than 
one ES is a consideration here. For example, Kraemer et al., 
recommends reporting SRD, NNT and ROC curves for studies 
that compare two samples, such as in RCTs.12

Solely reporting an ES by itself is meaningless for a 
consumer as it can mean almost anything. A small ES can 
have clinical significance in one context but not another, 
whereas a large ES might have relatively less importance or 
persuasive. Consequently, reported a ES needs some narrative 
contextualising it against some frame of reference, such as 
a well-known scale, outcome, patient experience, previous 
study, or functional based change.1 Narrative around the 
index (e.g., Cohen’s d) used for obtaining the ES, quantifying 
the magnitude of the effect and a qualitative explanation of 
the effect regarding everyday practice is also needed to fully 
appreciate the clinical significance and utility of the effect. 
Finally, reporting ES as part of general results can aid future 
research as they can be used for priori power analysis.

The above recommendations are not new. In 1999 The Task 
Force on Statistical Inference of the American Psychological 
Association (APA) outlined similar expectations of 
researchers as part of their common reporting standards 
across research designs.43 These recommendations 
continue today in the current APA Manual (v7) that notes 
the importance of reporting ES so the consumer can fully 

understand the importance of a study’s results. Even 
before these APA recommendations, Kazis et al., advocated 
for ‘the use of effect sizes as a method for estimating and 
communicating the extent of health status change that 
occurs in a group.’11(p.188) They further go on to advise that 
ES should supplement statistical significance testing in 
interpreting results and when reported, assist in comparing 
results across studies.11

Reporting CIs around ES should be considered but are not 
commonly reported.9,29 This is because the connection 
between an ES and statistical significance (i.e., p-value) is via CI 
width. CIs provide a range of internal result estimates being a 
measure of imprecision or uncertainty of the true effect. That 
is, ‘a confidence interval can also be defined as a point estimate 
of a parameter (or an effect size) plus or minus a margin of 
error.’1(p.17) The wider the CI the less certain or precise the true 
effect is and if the CI crosses zero, a result is not statistically 
significant. A CI of 95% means the true effect lies within the 
lower and upper CI limits 95% of the time. It is important to 
consider that a CI width is inversely proportional to sample 
size so the larger the sample size the narrower the probability 
and more precise the effect distribution (i.e., CI) is likely to be. 
The relationship between these aspects is illustrated in Figure 2 
through four hypothetical scenarios.

This figure illustrates that while a study’s results may be 
statistically significant, they may not be clinically significant 
due to the desired ES (> 0.8) being based on a therapeutic 
decision limit (4% drop in blood pressure). It also illustrates 
how CI width is inversely proportional to sample size 
(scenario 4).

INTERPRETING ES 

Interpreting the clinical significance of an ES as it relates to 
results and the clinical context can be difficult. This is mainly 
due to the numerous factors needing consideration. Some 
include the type of ES reported, how the ES was derived, what 
the ES is to be used for, the context (empirical vs clinical), the 
relevant diagnosis related group (DRG), and how the ES was 
identified (i.e., using an outcome measure or statistical test). 
Findings from four inpatient rehabilitation studies are used 
to illustrate how ESs can be interpreted (see Table 4).

Drop in BP (%) 0 1 2 3 4 5 6 7 8 Significance

Scenario 1 
2 mg Perindopril

Not statistically significant & no clinical significance. 
ES < 0.2, N = 50

Scenario 2 
4 mg Perindopril

Statistically significant but no clinical significance. 
ES < 0.2, N = 50

Scenario 3 
8 mg Perindopril

Statistically significant & clinical significance. 
ES > 0.8, N = 50

Scenario 4 
8 mg Perindopril

Not statistically significant with possibly clinical significance. 
ES > 0.8, N = 10

4% drop in BP =  Clinical significance decision limit

FIGURE 2. RELATIONSHIP BETWEEN STATISTICAL AND CLINICAL SIGNIFICANCE, SAMPLE SIZE (N) AND EFFECT SIZE (ES)
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The Functional Independence Measure (FIM) and/or Barthel 
Index (BI) were used in the four exemplar studies to examine 
the effectiveness of inpatient rehabilitation for five DRGs. 
As per the results in Table 4, hip fracture,22 brain injury,44 
and stroke patients,30 appeared to have a moderate to 
large benefit from inpatient rehabilitation as they all had 
ESs above 0.5. The FIM and BI derived ESs for the multiple 
sclerosis (MS) cohort equated to small effects being 0.30 and 
0.37, respectively. This is an important finding as it shows that 
the effectiveness of inpatient rehabilitation differs between 
DRGs, with MS patients possibly only obtaining modest 
benefits from this intervention compared to other DRGs. This 
is further evidenced by the MS cohort having low absolute 
function gain scores. MS is a degenerative condition that 
possibly mitigates some capacity for MS patients to improve 
from rehabilitation compared to other DRGs with newly 
acquired conditions who are likely to have more capacity to 
improve.

Several other inferences can be drawn from the ES results 
data in Table 4. First, rehabilitation had a large effect on 
traumatic brain injury (TBI) patients irrespective of their 
rehabilitation program being interrupted resulting from 
readmission to acute care (ES = 1.21).44 Second, TBI patients 
in a specialist TBI inpatient rehabilitation unit had larger 
functional gains (ES = 0.84 and 1.21) compared to those 
admitted to a general neurological rehabilitation unit 
(ES = 0.52 and 0.55).44,45 Third, the FIM and BI had similar 
responsiveness for these DRGs as their ESs were comparable. 
Finally, the FIM’s MDC is approximately 11 points of total FIM 
score which stands to reason as FIM is an 18-item ordinal scale 
with item scores ranging from 1 for completely dependent to 
7 for independent.

Another relatively unfamiliar way to interpret the clinical 
significance of ES is by using an improvement index to 
convert the ES value into percentile gain manifested by the 
target group.3 Being derived from equivalents of Cohen’s 
d, the U indexes can be used here (see Table 4 and Figure 
3).34(pp.21–22) For example, an ES of d = .30 indicates that 61.8%  
of the treatment group will be above the mean of the control 
group (Cohen’s U3) representing a 62% improvement in the 
treatment group. Cohen’s U indexes can also be interpreted 
in terms of percentage of non-overlap (U1) between 
treatment group and untreated group scores on a bell curve. 
In this instance, an ES of .30 indicates that 21% of the two 
groups’ scores will not overlap (79% overlap). 

TABLE 4: EXEMPLAR OF STUDIES ILLUSTRATING THE DIFFERENCE BETWEEN ES AND DRGS IN INPATIENT 
REHABILITATION

Studies DRG Measures AFG (SD) d Δ Cohen’s  
U3 index

MDC95

Van der Putten et al30 MS FIM total
BI (0-20)

6.9 (8.3)
2.1 (2.4)

0.30
0.37

61.8%
64.4%

Stroke FIM total
BI (0-20)

21.9 (19.0)
5.2 (4.4)

0.82
0.95

79.4%
82.9%

Houlden et al45 BI vascular
TBI

FIM total 17.3 (15.1)
17.4 (15)

0.59
0.52

72.2%
69.8%

BI vascular
TBI

BI (0-20) 3.9 (3.4)
3.95 (3.4)

0.65
0.55

74.2%
70.9%

McKechnie et al44 TBI without RTAC
TBI with RTAC

FIM total
FIM total

28.2 (25.8)
33.3 (32.3)

0.85
1.21

80.2%
88.7%

11.9

Arcolin et al22 Hip fracture FIM total
BI (0-100)

24.4 (11.8)
23.4 (15.1)

1.39
1.35

91.8%
91.1%

10.3 

Abbreviations: DRG, diagnosis related group; AFG, absolute functional grain (discharge mean – admission mean); SD, standard deviation;  
d, Cohen’s SDpooled; Δ, Glass’s delta; MS, Multiple Sclerosis; BI, brain injury; TBI, traumatic brain injury; RTAC, readmission to acute care;  
FIM, Functional Independence Measure (18-126 score range); BI, Barthel Index
Note: Cohen’s U3 index34 based on Cohen’s SDpooled or Glass’s delta and used for comparison between pre vs post treatment and not between two 
independent groups
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FIGURE 3: EQUIVALENTS OF COHEN’S d REPRESENTED AS  
U INDICES
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An automated online tool for these calculations that also 
provides an interpretation of the results is available at  
https://rpsychologist.com/cohend/. The website’s author 
notes differences in their results compared to Cohen’s 
regarding the percentage of non-overlap (Cohen’s U1) and 
provides a detailed rationale for the inconsistencies stating 
that his calculations are more robust.46 Using the above 
example, d = .30 equates to 12% non-overlap based on his 
calculations. The improvement per cent index (Cohen’s U3) 
remains the same.

IMPLICATIONS FOR RESEARCH, POLICY 
AND PRACTICE 
Clinical nurses use patient change and measurement 
instruments to rationalise clinical significance and their 
resultant interventions. They should also consider the 
magnitude of effect and the responsiveness of instruments 
they use for more robust evidenced-based clinical 
decision making. Nurse researchers in the first instances 
should always attempt to identify population ESs worth 
investigating as they would be applied to their context. Both 
clinical nurses and nurse researchers need to understand 
aspects of ES to realise these goals. Considerations for 
measuring and quantifying patient change with ESs has 
been discussed. In doing so, this paper aids clinical nurses 
and nurse researchers in using ES to inform clinical decision 
making and report clinically meaningful research results.

CONCLUSION 
This paper provides clinical nurses and nurse researchers 
with a broad overview on determining clinically significant 
patient change using ESs. In doing so, it provides guidance 
on how to critique research literature and apply ES in clinical 
and research contexts. This paper aids nurses to effect change 
based on informed decision  making thus strengthening 
their evidence-based practice.
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